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An axisymmetric, incompressible Navier-Stokes solver was developed to calculate the
flow field of a ducted fan. The fan effect is modeled via the momentum source concept.
The effects of the spinning fan blades were introduced into the flow field as time-averaged
sources in the momentum equations. These source terms were not known a priori but are
the result of the flow solution at each iteration. This approach simplified the modeling
of the fan blades and provided a very rapid solution procedure for the flow problem.

A new grid generator capable of recognizing the duct and nacelle geometry was de-
veloped and tested for several industrial ducted fans of current interest. Prediction of
hover performance for a ducted fan model was calculated and compared with available
wind tunnel test data. The comparison was good. Preliminary results showed that the
Computational Fluid Dynamics (CFD) program could be used as an axial flow analysis
tool for ducted fan design.

Introduction

The concept of ducted fans as a suitable propulsive
device for certain vertical/short take-off and landing
(V/STOL) applications has been explored for more
than a quarter century; the BELL X-22A is a good
example of a successful application. In the 1970s, the
ducted propeller was seen as a “quiet” propulsive de-
vice with the potential to meet the noise requirements
of the 1980s and beyond. The 1990s saw the ducted fan
as a viable concept for several unmanned air vehicles
(UAV) such as Sikorsky’s Cypher and Micro-Craft’s
Lift Augmented Ducted Fan (LADF). The UAVs have
a small footprint and are light, making them efficient
for vertical take-off and landing. The noise character-
istics of the ducted fans also make them suitable for
undetected surveillance.

The viscous flow through a ducted fan is very complex.
The clearance between the tip of the fan blades and
the duct is several orders of magnitude smaller than
the fan radius. It strongly affects the characteristics
of the flow through the ducted fan and consequently
the performance of the ducted fan system. The in-
flow lip region is another geometric characteristic that
influences the performance of the system. The shape
of the duct, geometry of the nacelle and position of
the fan within the duct all play important roles in the
determination of the performance of the ducted fan.
For analysis tools to be successful in ducted fan de-
sign, they must be capable of including as much of the
detail of the geometry of the system as possible.

Simple momentum balance methods1–3 assume uni-
form inflow and outflow with the direction of flow
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parallel to the duct axis. In addition, the fan is
treated as an actuator disk with constant inflow. The
results obtained with these ideal assumptions are es-
sentially useful only for approximate comparison with
experiments and for predicting the upper limit on the
performance. In such simplified analysis the geomet-
ric characteristics of the duct, blades, hub and guiding
vanes are not properly represented.

Some of the problems associated with the representa-
tion of the geometry and surfaces of the ducted fan
were eliminated by potential flow methods.4–6 How-
ever, the inherent assumptions of potential flow (in-
viscid, irrotational and incompressible) preclude esti-
mation of important characteristics of the duct such
as friction drag, location of the center of pressure, and
stall characteristics of the duct. Also, due to the lin-
ear nature of the analysis, mutual interference effects
between duct and fan are ignored. As a result, all ba-
sic design studies were made using costly wind tunnel
experiments.

In the early 1960s, extensive wind tunnel experi-
ments7–10 were conducted and a wealth of data on the
thrust, drag and efficiency of scale models and proto-
types was collected. But, specific application was the
guiding principle of the work, and parametric study
proved costly. In the 1970s, Davis11 reported on the
work performed in the United Kingdom to validate
the claim that the ducted propeller is a quiet and
cost effective propulsive device. NASA also conducted
several experimental studies12–16 to investigate inte-
grated performance of ducted propellers mounted on
wings and full aircraft. These research efforts were
very informative regarding the control characteristics
of aircraft with ducted propellers. Nevertheless, most
of the experimental research was designed for specific
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applications and not for the basic research of the flow
through the ducted fan.

In the next section, the viscous flow analysis code for
a ducted fan will be described.

Computational Procedure

The choice of the flow solver and the technique used
for modeling the fan are central to the present CFD
code. Their essential details are described here.

Flow Governing Equations

The flow around a ducted fan is mostly low-speed,
except near the fan blade tips. The flow field is basi-
cally governed by the unsteady, laminar, incompress-
ible Navier-Stokes equations. For incompressible flow,
conservation of mass and momentum are sufficient con-
ditions for defining the flow field. The conservation of
mass applied to a fluid passing through an infinitesimal
fixed control volume yields the equation of continuity:

∂ρ

∂t
+ ∇ •

(
ρ~V
)

= 0 (1)

Newton’s second law applied to a fluid passing through
the control volume yields the momentum equation:

∂

∂t

(
ρ~V
)

+ ∇ • ρ~V ~V = ρ~f + ∇ • Πij + S′ (2)

For an axisymmetric system, the flow equations in
scalar form are as follows:

Continuity equation:

1
r

[
∂

∂r
(r ρVr) +

∂

∂z
(r ρVz)

]
= 0 (3)

r momentum equation:

∂

∂t
(ρVr) +

1
r

[
∂

∂r

(
r ρVr

2 − µr
∂Vr

∂r

)
+

∂

∂z

(
r ρVzVr − µr

∂Vr

∂z

)]

= −
∂p

∂r
+

ρVθ
2

r
−

µVr

r2
+ S′

r (4)

θ momentum equation:

∂

∂t
(ρVθ) +

1
r

[
∂

∂r

(
r ρVrVθ − µr

∂Vθ

∂r

)
+

∂

∂z

(
r ρVzVθ − µr

∂Vθ

∂z

)]

= −ρVrVθ

r
− µVθ

r2
+ S′

θ (5)

z momentum equation:

∂

∂t
(ρVz) +

1
r

[
∂

∂r

(
r ρVrVz − µr

∂Vz

∂r

)
+

∂

∂z

(
r ρVz

2 − µr
∂Vz

∂z

)]

= −∂p

∂z
+ S′

z (6)

where S′
r, S′

θ and S′
z are source terms through which

the influence of the fan is introduced into the surround-
ing flow field.

Discretization of the Flow Governing Equations

Consider the following generic governing equation for
an axisymmetric system:

∂

∂t
(ρT )+

1
r

[
∂

∂r

(
r ρVr T − µr

∂T

∂r

)
+

∂

∂z

(
r ρVz T − µr

∂T

∂z

)]

= s (7)

where s represents the terms on the right side of the
momentum equations, excluding the fan sources.

Defining the following total fluxes,

Jr =
(

r ρVr T − µr
∂T

∂r

)

Jz =
(

r ρVz T − µr
∂T

∂z

)

Equation 7 can be rewritten as

∂

∂t
(ρT ) +

1
r

[
∂

∂r
(Jr) +

∂

∂z
(Jz)

]
= s (8)

Integrating the above equation over the control volume
shown in Figure 1 yields:

e∫

w

t∫

b

n∫

s

t1∫

to

∂

∂t
(ρT ) r dt dr dθ dz+

t1∫

to

e∫

w

t∫

b

n∫

s

1
r

∂

∂r
(Jr) r dr dθ dz dt+

t1∫

to

e∫

w

t∫

b

n∫

s

1
r

∂

∂θ
(Jθ) r dr dθ dz dt+

t1∫

to

e∫

w

t∫

b

n∫

s

1
r

∂

∂z
(Jz) r dr dθ dz dt
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Fig. 1 A typical control volume in an axisymmetric
grid

=

t1∫

to

e∫

w

t∫

b

n∫

s

s r dr dθ dz dt (9)

The integration over the time interval can be general-
ized by the following assumptions:

t1∫

to

TP dt =
[
fTP

1 + (1 − f)TP
o
]
∆t (10)

where f is a weighting factor between 0 and 1; super-
script 1 indicates the new values of the corresponding
variables at t=t1 seconds; superscript o refers to old
values of the variables at to.

Using the assumption in Equation 10, the integration
of Equation 9 divided by ∆t yields the following:
[
(ρT )1 − (ρT )o

]

∆t
rj∆r ∆θ ∆z + f [Jn − Js]

1+

(1 − f) [Jn − Js]
o + f [Je − Jw]1 + (1 − f) [Je − Jw]o

= f [(sconst + scoefTP ) rj ∆r ∆θ ∆z]1+

(1 − f) [(sconst + scoefTP ) rj ∆r ∆θ ∆z]o (11)

where (sconst + scoefTP ) is the linearized source term.
The term, sconst, is the constant part of the linearized
source term and scoef , is the coefficient of the inde-
pendent variable T evaluated at the point P . The
integrated total fluxes over the control volume faces

Jn, Js, Je, Jw are given by:

Jn = (Jr)n (r ∆θ ∆z)n

Js = (Jr)s (r ∆θ ∆z)s
Je = (Jz)e (r ∆r ∆θ)e

Jw = (Jz)w (r ∆r ∆θ)w

In a similar fashion the continuity equation (Equa-
tion 3) can be integrated over the control volume:

t1∫

to

e∫

w

t∫

b

n∫

s

1
r

∂

∂r
(rρVr) r dr dθ dz dt+

t1∫

to

n∫

s

t∫

b

e∫

w

1
r

∂

∂z
(rρVz) r dz dθ dr dt = 0

The integration yields:

f (Fn − Fs)
1 + (1 − f) (Fn − Fs)

o+

f (Fe − Fw)1 + (1 − f) (Fe − Fw)o = 0 (12)

where the total mass fluxes Fn, Fs, Ft, Fb, Fe and Fw

are given by:

Fn = (ρVr)n (r ∆θ ∆z)n

Fs = (ρVr)s (r ∆θ ∆z)s

Fe = (ρVz)e (r ∆θ ∆r)e

Fw = (ρVz)w (r ∆θ ∆r)w

Multiplying Equation 12 by TP and subtracting it from
Equation 11 results in the following equation:

[
(ρT )1 − (ρT )o

]

∆t
rP ∆r ∆θ ∆z+

f [Jn − Fn TP ]1 + (1 − f) [Jn − Fn TP ]o+

f [Js − Fs TP ]1 + (1 − f) [Js − Fs TP ]o+

f (Je − Fe TP )1 + (1 − f) (Je − Fe TP )o+

f (Jw − Fw TP )1 + (1 − f) (Jw − Fw TP )o+

(1 − f) [Jn − Fn TP ]1 + (1 − f) [Jn − Fn TP ]o+

(1 − f) [Js − Fs TP ]1 + (1 − f) [Js − Fs TP ]o+

(1 − f) (Je − Fe TP )1 + (1 − f) (Je − Fe TP )o+

(1 − f) (Jw − Fw TP )1 + (1 − f) (Jw − Fw TP )o+

= f [(sconst + scoefTP ) rP ∆r ∆θ ∆z]1+
(1 − f)[(sconst + scoefTP ) rP ∆r ∆θ ∆z]o (13)

Following the procedure explained in Chapter 5 of
Reference,17 the terms between the brackets in Equa-
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tion 13 can be replaced by:

(Jn − Fn TP ) = AN (TP − TN )
(Js − Fs TP ) = AS (TS − TP )
(Je − Fe TP ) = AE (TP − TE)

(Jw − Fw TP ) = AW (TW − TP )

For convenience, the superscript for new values is
dropped. Consequently, the final discretized generic
equation can be written as:

aP TP = aETE + aW TW + aNTN + aSTS +
aT TT + aBTB + b

=
∑

anbTnb + b (14)

where E, W , N and S refer to east, west, north, and
south grid points respectively; nb refers to the points
neighboring the point P . The coefficients aE , aW , aN

and aS contain the convection and diffusion terms and
are given by the following relations:

aE = DeA (|Pe|) + [[−Fe, 0]]
aW = DwA (|Pw|) + [[Fw, 0]]
aN = DnA (|Pn|) + [[−Fn, 0]]
aS = DsA (|Ps|) + [[Fs, 0]] (15)
aP = f (aE + aW + aN + aS) +

ρ rP ∆r ∆θ ∆z

∆t
− f scoef ∆V

b = f sconst ∆V + (1 − f) sconst
o ∆V +

(1 − f)
∑

anb
oTnb

o +

ρ rP ∆r ∆θ ∆z

∆t
TP

o

where Pe, Pw, Pn and Ps are the Peclet numbers,
which are the ratio of F (the flow rate across the sur-
face of the control volume) and D (the diffusion across
the surface of the control volume). The symbol [[ ]]
denotes the greater of the quantities within.

The power-law scheme was selected for the function
A (|P |), which is given by

A (|P |) = [[0, (1 − 0.1 |P |)5]] (16)

The above function is a curve fit of the exact solution of
the steady one-dimensional convection/diffusion prob-
lem of the general dependent variable T . The variation
of T is dependent on the convection (F ) and diffusion

Fig. 2 The staggered grid

(D) given by:

Fe = (ρVz)e (r ∆θ ∆r)e

De =
µe

δze
(r ∆θ ∆r)e

Fw = (ρVz)w (r ∆θ ∆r)w

Dw =
µw

δzw
(r ∆θ ∆r)w

Fn = (ρVr)n (r ∆θ ∆z)n
Dn =

µn

δrn
(r ∆θ ∆z)n (17)

Fs = (ρVr)s (r ∆θ ∆z)s

Ds =
µs

δrs
(r ∆θ ∆z)s

where the suffixes e, w, n and s refer to control volume
faces; δr, δz are the distances between grid points as
illustrated in Figure 2. The value of diffusion pertain-
ing to control volume faces is determined through the
use of harmonic mean.

Until now, all the integrations were applied to the
general control volume in Figure 1. It is important
to note that the grid used for solving the momentum
equations is staggered. In other words, the control vol-
ume is different for each of the momentum equations.
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Fig. 3 a. Vr grid cell b. Vz grid cell

Therefore, a shift in indexing needs to be applied to
the discretized equations. The staggered grid for the
momentum equations is shown in Figure 3.

In addition, by taking advantage of an axisymmetric
system, only one control volume in the θ-direction is
used. For convenience, the term ∆θ is taken to be 1.0
radian.

Discretization of the Momentum Equation Source
Terms

The aim in this section is to integrate, discretize and
linearize the right-hand side of the momentum equa-
tions (4-6). The integration process first takes place
on a control volume similar to the one in Figure 1;
however, here we abandon the E, W , N , S, grid point
referencing and instead use the classical i, j referenc-
ing (see Figure 4). Since each of the three momentum
equations are solved on a different staggered grid, a
shift in indexing is applied on the discretized source
terms to properly match the corresponding staggered
grid. The integration in the θ-direction will be taken
from 0. to 1. radian.

Fig. 4 Control volume numbering

The source terms of Equations 4-6 are given by:

r − momentum source terms = −∂p

∂r
+

ρVθ
2

r

−µVr

r2

θ − momentum source terms = −ρVrVθ

r
− µVθ

r2

z − momentum source terms = −∂p

∂z

Integration of the r-momentum Equation Source
Terms

The source terms of the r-momentum equation must
be discretized on the Vr-staggered grid. Therefore, the
source terms are first integrated on the control volume
shown in Figure 4, and then shifted by one-half control
volume in the negative r-direction.

1.
(
−∂p

∂r

)
term.

The integration of
(
−∂p

∂r

)
on a control volume

yields:

−

i+ 1
2∫

i− 1
2

1∫

0

j+ 1
2∫

j− 1
2

∂p

∂r
r dr dθ dz

= −

i+ 1
2∫

i− 1
2

1∫

0

j+ 1
2∫

j− 1
2

∂ (p r)
∂r

dr dθ dz

+

i+ 1
2∫

i− 1
2

1∫

0

j+ 1
2∫

j− 1
2

p dr dθ dz

= −
[
(p r)j+ 1

2
− (p r)j− 1

2

]
∆zi + p̃ ∆rj ∆zi

Approximating:

D
ow

nl
oa

de
d 

by
 N

A
SA

 A
M

E
S 

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n 
D

ec
em

be
r 

27
, 2

01
7 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
00

3-
40

79
 



p̃ by
(

p
j+ 1

2
+p

j− 1
2

2

)

rj+ 1
2

by
(
rj + ∆rj

2

)

rj− 1
2

by
(
rj − ∆rj

2

)

gives :

= −
[
pj+ 1

2

(
rj +

∆rj

2

)
− pj− 1

2

(
rj −

∆rj

2

)]
∆zi

+
(
pj+ 1

2
+ pj− 1

2

) (
∆rj

2

)
∆zi

=
(
pj− 1

2
− pj+ 1

2

)
rj ∆zi

For the Vr-staggered grid we shift the indexing
by one-half control volume in the negative
r-direction, to get:

= (pj−1 − pj)
(

rj −
∆rj

2

)
∆zi

This term will be referred to as (pP − pN )An in
later sections.

2.
(

ρVθ
2

r

)
term.

Integrate
(

ρVθ
2

r

)
over the control volume to get:

i+ 1
2∫

i− 1
2

1∫

0

j+ 1
2∫

j− 1
2

ρVθ
2

r
r dr dθ dz

=
(
ρVθ

2
)
i,j

∆rj ∆zi

A shift of a one-half control volume in the negative
r-direction yields

=
(
ρVθ

2
)
i,j− 1

2
(rj − rj−1) ∆zi

The term obtained above is independent of the
velocity Vr . Therefore, it is included into the con-
stant part of the linearized source term, sconst.

3. −µVr

r2 term.
Again we integrate over the control volume to ob-
tain:

−

i+ 1
2∫

i− 1
2

1∫

0

j+ 1
2∫

j− 1
2

µVr

r2
r dr dθ dz

= − (µVr)i,j ln

[
rj+ 1

2

rj− 1
2

]
∆zi

and then we shift by one-half control volume in
the negative r-direction to get

= − (µ)i,j− 1
2

VRi,j ln
[

rj

rj−1

]
∆zi

1

1The reason the index j − 1
2

is given to µ while the index
j is given to Vr is: Vr is defined at the face of the control
volume,(staggered grid), on the other hand µ is defined at the
grid points. Therefore, the value of µ must be interpolated at
j − 1

2
.

This source term is dependent on the Vr velocity.
Therefore, the proper formulation is to include it
into the scoef part of the linearized source term.

Integration of the θ-momentum Equation Source
Terms

Here, the source terms of the θ-momentum is inte-
grated on the control volume shown in Figure 4, and
then shifted by one-half control volume in the negative
θ-direction to match the θ-staggered grid.

1. −ρVrVθ

r term.
Integrate over the control volume to obtain:

−

i+ 1
2∫

i− 1
2

1∫

0

j+ 1
2∫

j− 1
2

ρVrVθ

r
r dr dθ dz

= − (ρVrVθ)i,j ∆rj ∆zi

shift by one-half control volume in the negative
θ-direction to get:

= − (ρVr)i,j− 1
2

(Vθ)i,j ∆rj ∆zi

To satisfy the positive coefficient rule, that is scoef

must be positive, the linearization of this source
term is as follows:

sconst = [[− (ρVr)i,j− 1
2

∆rj ∆zi, 0]] (Vθ)i,j

scoef = −[[(ρVr)i,j− 1
2

∆rj ∆zi, 0]]

If Vr happens to be negative then the term sconst

will be included in the constant source term. On
the other hand, if Vr is positive, then the term
scoef will be included in the dependent source
term.

2. −µVθ

r2 term.
Integrate over the control volume to obtain:

−

i+ 1
2∫

i− 1
2

1∫

0

j+ 1
2∫

j− 1
2

µVθ

r2
r dr dθ dz

= − (µVθ)i,j ln

[
rj+ 1

2

rj− 1
2

]
∆zi

Integration of the z-momentum Equation Source
Terms

1. −∂p
∂z term.

Integrate

−

i+ 1
2∫

i− 1
2

1∫

0

j+ 1
2∫

j− 1
2

∂p

∂z
r dr dθ dz

= −
1∫

0

j+ 1
2∫

j− 1
2

r
(
pi+ 1

2 ,j − pi− 1
2 ,j

)
dr dθ

=
(
pi− 1

2 ,j − pi+ 1
2 ,j

)( (rj+ 1
2
)2 − (rj− 1

2
)2

2

)
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=
(
pi− 1

2 ,j − pi+ 1
2 ,j

)(
rj+ 1

2
− rj− 1

2

) (
rj+ 1

2
+ rj− 1

2

2

)

=
(
pi− 1

2 ,j − pi+ 1
2 ,j

)
rj ∆rj

shift by one-half control volume in the negative
z-direction, to get:

= (pi−1,j − pi,j) rj ∆rj

Rotor Modeling

The fan modeling is based on the momentum source
concept developed by Rajagopalan.18–20 In order to
obtain the wake of the fan, not known a priori, the
action of the rotating blades has to be implicitly in-
troduced into the governing equations. In other words,
the effect of the spinning blades is in the form of the
force F(x,y,z,t) imparted by the blade to the fluid par-
ticles in the path of the fan. Realizing that the momen-
tum equation governs the balance of the rate of change
of momentum and the external forces experienced by
the fluid element, the effects of the spinning blade on
its path at a given time can be modeled by including
the force F (imparted by that fan at that particular
time) to the momentum source at the cells occupied
by the fan at that particular time. The force F(x,y,z,t)
can be described by its components in each of the co-
ordinate directions. These components of F(x,y,z,t)
are introduced in the scalar momentum equations as
implicit sources.

The force -F exerted by the fluid on the blade varies
along the span of the blade and in general, may vary
as a function of time as well. These variations are
largely due to the local flow conditions, variations in
the blade’s chord, aerodynamic twist, and geometric
twist along the span. As a result, the different seg-
ments of the blade will also see different strengths
and directions of the relative wind, and the flow field
around the fan itself may be inherently unsteady due
to the presence of bodies. For a time-accurate calcu-
lation, the source terms in functional notation can be
written as:

Si = Si(Cl, Cd, α, α̇, vabs, ω,

R, t, c, ρ, µeff , Re, M)
(18)

where Cl and Cd are airfoil characteristics of the fan
blade, α is the angle of attack made by the fan blade
to the relative velocity vector, α̇ is the time rate of
change of α as the blade moves through a revolution,
vabs is the absolute velocity of the fluid at the instan-
taneous blade location (R, t), ω is the angular velocity
of the fan, and c is the chord of the blade. Even though
the complete Navier-Stokes equations are solved every-
where in the flow field, the dependence of Si on µ and
Re are considered only implicitly through the airfoil
sectional characteristics Cl and Cd in this analysis.

Using this method it is necessary to divide the blade
into many spanwise blade elements, where the blade
properties (aerodynamic and geometric) are assumed
to be constant for each element. Using velocities from
the previous time-step, the relative wind for each blade
element can be computed and then used to determine
the lift and drag (using a look up table for the CL

and CD) at each of the blade elements. The forces are
resolved into the coordinate directions and included as
sources in the corresponding momentum equations for
the next solver iteration.

Since the blade does not occupy a given cell at all
times as it sweeps the disk, only a fraction of the fan
source needs to be allocated to that particular cell.
This fraction is determined as follows.

The time taken by the center of the blade element to
traverse one revolution is:

t1.rev =
2π

ω
, (19)

where ω is the angular speed of the blade in radi-
ans/sec. The time the center of a blade element spends
in a given cell is:

t∆θ =
∆θ

ω
(20)

where ∆θ is the angular measure of the path traced by
a blade element as it passed through that cell. There-
fore, the fractional time that the blade element spends
in a cell is:

tfrac =
∆θ/ω

2π/ω

=
∆θ

2π
, (21)

For a fan with N blades, this fraction becomes:

tfrac = N
∆θ

2π
. (22)

This time-averaging technique represents a convenient
and reasonable approximation in the fan modeling pro-
cedure. While it is true that the flow through a fan is
unsteady in nature, the flow in the immediate vicin-
ity of the fan disk is mostly in the direction normal
to the disk (except at the fan tip region), coupled
with a strong swirling motion due to the shear im-
parted by the rotating blade. Since the mean of the
flow quantities is large, the unsteady components can
be averaged without compromising the physics of the
solution. This time-averaged technique allows suffi-
ciently large time steps to be taken to advance the
solution, without constraint from the rotational speed
of the blade, since no attempt is made to consider the
specific blade locations at different times.
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 (0)

(3) (2)
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Fig. 5 The curve adaptive procedure used in grid
generation.

Cartesian Grid Generation

The shape of the duct plays a very important role in
the performance of a ducted propeller system. There-
fore, proper representation of the duct geometry is
critical. For maximum accuracy in the Cartesian co-
ordinate system, the grids around the duct need to be
arranged such that the boundaries of the duct pass
through opposite corners of the surface cells. For this
purpose, an option was added to the grid generation
program to enforce the above criteria, known as “the
curve adaptive option”.

The following methodology is used to implement the
curve adaptive option: First, an initial grid based on
a user specified number of points on the body and
cluster ratio is constructed. Then, from each speci-
fied point, the grid generator finds the next grid point
on the body surface by moving in x or y directions.
This procedure stops when: (1) two neighbor points
are within a given tolerance, (2) the slope angle of the
surface at the point is 0 or 90 degrees or (3) exceed-
ing a preset number of movements. This procedure is
depicted in Figure 5. Figure 6 shows the grids near a
duct generated using the above procedure. As shown
in the figure, the points on the boundary pass the cells
diagonally.

Using the curve adaptive methodology, the resolution
of the grid in the convex areas of the body surfaces
is higher than other regions. In other words, this
method may generate cells with high clustering ratio,
which may result in numerical instabilities and grid
shocks. To avoid these problems, a smoothing process
is implemented into the grid generation program which
ensures that the ratio between two adjacent grid cell
sizes is no greater than 2.0. In this process, the grids
around the duct may be changed slightly. The duct
boundary does not cross the opposite corners of a few
cells. An example of the final grid generated around
the duct surface is shown in Figure 7.

Solution Procedure of the Discretized Equations

In this research, the discretized equations are solved
using a finite-volume approach called SIMPLER, de-
veloped by Patankar.17 This approach uses an iter-
ative procedure to solve for the primitive variables
(velocity and pressure fields). The discretized equa-
tions are solved using a line-by-line method combining
the Tri-Diagonal Matrix Algorithm (TDMA) and the

Fig. 6 A sample grid around a duct generated
using curve adaptive option.

Fig. 7 A sample grid around the duct after
smoothing process.

Gauss-Seidel method. The details of the SIMPLER
algorithm can be found in Reference;17 only highlights
and important principles are presented here. A brief
description of the momentum and pressure equations
used in the SIMPLER algorithm follows.

Momentum Equations
By employing the formulation for discretizing

the general differential equation, the discretized r–
momentum equation on a staggered grid shown in
Figure 3.a can be written as:

anVrn =
∑

anbVrnb + br + (pP − pN)An (23)

where the neighboring coefficients anb account for the
combined convection–diffusion influence at the control
volume faces, br represents the discretized source term,
the term pP −pN is the pressure gradient acting on the
control volume, and An is the area on which the pres-
sure acts. The coefficients of the momentum equation
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(ae, aw, an, as), being functions of the velocity compo-
nents, make the momentum equation non-linear. This
non-linearity is handled by adopting an iterative strat-
egy and by lagging the coefficients.

Similarly, the θ–momentum equation and the z–
momentum equation can also be discretized to yield
the following:

atVθt =
∑

anbVθnb + bθ (24)

aeVze =
∑

anbVznb + bz + (pP − pE)Ae (25)

The discretized momentum equations can be solved
iteratively if the pressure field is known. If the cor-
rect pressure field is employed the resulting velocity
field will satisfy the continuity equation. However, the
pressure field is unknown and an equation for pressure
must be derived to solve for it.

Pressure Equation and Pressure Correction Equation
Since the main driving force for the velocity from one

cell to the next cell is the pressure difference between
the two cells, an accurate solution of the pressure field
is important. By manipulating the continuity equation
and the momentum equation, an equation for pressure
is derived and discretized to yield a form similar to
Equation 14:17

aP pP = aEpE + aW pW + aNpN + aSpS + bp (26)

If the correct velocity field is used in the above equa-
tion the correct pressure field will result. For a guessed
velocity field, a pressure correction equation is required
to correct the velocity field obtained from solving the
momentum equation. Once more, the pressure correc-
tion equation is derived by manipulating the continuity
and the momentum equations, and it is cast in a form
similar to Equation 14. The purpose of the pressure
correction equation is to improve the pressure field
such that the velocity field will be corrected every it-
eration and progressively get closer to satisfying the
continuity equation.

SIMPLER Algorithm

The sequence of steps for the unsteady SIMPLER al-
gorithm can be summarized as follows:

1. Start with a given (guessed) velocity field.

2. Calculate the coefficients of the momentum and
pressure equations.

3. Solve pressure equations to obtain the pressure
field.

4. Using the calculated pressure field, solve the mo-
mentum equations to get the velocity field.

5. Calculate the source terms of the pressure correc-
tion equation and solve for the pressure correc-
tions.

6. Correct the velocities using the velocity correction
equations.

7. Return to step 2 and repeat until convergence.

8. Start with the next time.

Boundary Conditions

The velocities are set to freestream values at the in-
flow boundaries. The downstream boundary values are
extrapolated from the interior grid points and adjusted
to conserve mass flow through the computational do-
main. All the control volumes that lie in the solid
region are blocked off with zero velocities everywhere.
In other words, no-slip viscous boundary conditions
are applied to all solid bodies.

Results

The Navier-Stokes flow code described earlier was ap-
plied to simulate the following two configurations:

• Trek Aeropspace’s ducted fan

• Micro-Craft’s Lift Augmented Ducted Fan Un-
manned Air Vehicle (LADFUAV)

For each case, the configuration and computational
grids are described, and CFD results in the form of
pressure contour plots, velocity vectors and graphs
are presented. CFD results are compared with cor-
responding experimental data.

A typical run on a good resolution grid (183 x 176) will
approximately take 3 CPU hours on the Cray SV1ex
machine (500 MHz clock speed which is equivalent to
2.0 GHz for a personal computer (PC) machine) at
Ames Research Center. Specifically, it takes 2.17 CPU
seconds for each iteration step and 5000 iterations for
a complete calculation. The present code is based on
a sequential algorithm and is not easily parallelized.
Therefore, taking advantage of multiple processors is
not possible. However, the code can be run on a PC
machine. It takes 4.7 CPU hours to run the same cal-
culation on a PC machine with a 750 MHz processor.
The turn around time will improve for machines based
on the latest Intel processors (3.06 GHz, or even faster
clock speed).

Trek Aerospace’s Ducted Fan

The first configuration chosen to validate the solver
was Trek Aerospace’s ducted fan, shown in Figure 8.
This configuration consists of a duct, nacelle and fan.
The duct has a diameter of 38.073 inches with a fan
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Fig. 8 Trek Aerospace’s ducted fan configuration

to duct tip clearance of 0.0367 inches. The fan has 5
blades with a tip diameter of 38 inches.

For this case, the flow solver was applied to the Trek
Aerospace’s ducted fan for seven different operating
conditions in hover to construct the overall fan perfor-
mance map. Both duct and nacelle were considered
in the simulation while the fan was modeled by source
terms in the momentum equations, as explained ear-
lier.

The velocity profiles at three different fan speeds
(2000, 3000 and 4000 RPM) are shown in Figure 9.
In all cases, flow upstream and inside the duct are
streamlined and reversed flow in the wake is observed
downstream and outward from the duct. This reversed
flow becomes stronger as the fan speed increases. In-
side the duct, on the suction side near the fan tip, flow
accelerates, and the velocity magnitude increases at
higher RPMs.

Figure 10 depicts the pressure distribution around the
duct and nacelle for the same operating conditions.
The pressure increases as the flow passes through the
fan as a consequence of the work on the fluid by the
fan. Calculations reveal that the change in the pres-
sure through the fan is higher near the fan tip region
(see Figure 10), indicating that most of the pressure
is created by the fan tip. In the wake region, high
gradient pressure regions are observed at the same
location where the reversed flow occurs. These high
pressure regions are related to the vortex shedding and
are stronger as the fan speed increases.

The torque and thrust were calculated from the load
distribution on the blades using blade element theory.
A comparison between the CFD-predicted ducted fan
torque and wind tunnel measurements21, 22 at differ-
ent fan speeds is shown in Figure 11. The computed

Fig. 9 Velocity vector plot around Trek
Aerospace’s fan at RPM=2000, 3000, 4000
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Fig. 10 Pressure distribution around Trek
Aerospace’s fan at RPM=2000, 3000, 4000
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Fig. 11 Comparison of fan torque from CFD re-
sults and wind tunnel testing for Trek Aerospace’s
fan at different RPMs
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Fig. 12 Comparison of fan thrust from CFD results
and wind tunnel testing for Trek Aerospace’s fan
at different RPMs

ducted fan torques are within 2 percent of the experi-
mental data. The corresponding comparison of thrust
is plotted in Figure 12. In computation, the thrust of
a ducted fan consists of two parts, one for fan and the
other for duct. The wind tunnel data is in closer agree-
ment with the fan thrust rather than the total thrust
distribution. This phenomenon could possibly be due
to the disrupted flow in the lower quadrant of the test
article, and the presence of support structures within
the duct. After using ad hoc correction formula,23 the
wind tunnel hover values become:21

Thrust Coefficient = 0.213, Power Coefficient = 0.082,
Figure of Merit = 0.7068.

The computed thrust coefficient, power coefficient, and
figure of merit distributions are shown in Figure 13,
respectively. Overall, the thrust coefficient is within 3
percent of the corrected test data; the power coefficient
and the figure of merit, within 2 percent of those of
corrected experimental data.

Increasing the blade pitch can increase thrust levels at
the cost of higher power levels to turn the fan. A per-
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Fig. 13 Comparison of thrust, power, and figure
of merit distributions from CFD results and wind
tunnel testing for Trek Aerospace’s fan at different
RPMs

formance comparison of the Trek Aerospace’s ducted
fan and a new ducted fan with blade pitch increased
by 3 degrees is shown in Figure 14. At the 3500 RPM,
the new ducted fan delivered 25 percent more thrust
but required 37.5 percent more power. The figure of
merit was only improved 1.43 percent at this RPM.
Comparing with the baseline, the new ducted fan per-
formed better for RPMs greater than 2700 but worse
for RPMs less than 2700. The fan blade design en-
hancement is not simple. Even the final pitch setting
warrants an optimization code.
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Fig. 14 Comparison of thrust, power, and figure
of merit distributions of both the baseline fan and
the fan with new pitch blades at different RPMs

Micro-Craft’s LADFUAV

The Micro-Craft LADFUAV configuration has a duct
with a diameter of 9.0 inches and a two-blade fan with
a diameter of 8.985 inches. A simulation was carried
out in hover at 16,000 RPM.

The velocity-vector plot of the flow going through the
duct is presented in Figure 15. Due to viscous effects, a
reversed flow occurs near the inner surface of the duct.
Similar to the previous case, a recirculating region is
also observed downstream of the duct. Figure 16 shows
a close region near the fan tip. It can be seen that
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Fig. 15 Velocity distribution of Micro-Craft’s
LADFUAV in hover

Fig. 16 Flow near the fan tip region of Micro-
Craft’s LADFUAV in hover

recirculating flow occurs at the clearance between the
duct and the fan.

Figure 17 depicts the pressure distribution on the duct
with a section of the computational grid in the r − z
cutplane. The effect of the fan on the pressure distri-
bution on the duct and nacelle is shown in this figure.

The torque and thrust were calculated from the load
distribution on the blades using blade element theory.
The predicted fan torque and thrust at different fan
speeds are shown in Figure 18 and Figure 19, respec-
tively. Further aerodynamic performance analysis was
reported in Figure 20.

Conclusions

An axisymmetric Navier-Stokes flow code was devel-
oped to calculate the flow field of a ducted fan. Pre-
dictions of hover performance for two industrial ducted
fan models of current interest were calculated. One of

Fig. 17 Micro-Craft’s LADFUAV duct pressure
distribution
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Fig. 18 Predicted fan torque of Micro-Craft’s
LADFUAV at different RPMs
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Fig. 19 Predicted fan thrust of Micro-Craft’s
LADFUAV at different RPMs
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Fig. 20 Predicted thrust, power, and figure of
merit distributions of Micro-Craft’s LADFUAV at
different RPMs

them was compared with available wind tunnel test
data. The comparison was good. The thrust coeffi-
cient was within 3 percent of the corrected test data;
the power coefficient and the figure of merit within
2 percent of those of the corrected wind tunnel data.
Preliminary results showed that the present code is ac-
curate and can be used as an axial flow analysis tool
for ducted fan design.

The next step in code development for the ducted fans
will consider three-dimensional hover flight conditions
where the axisymmetric assumption will be removed to
account for the fan blade azimuthal position. Further
development of the research project will encompass un-
steady axial and forward flight conditions with duct

fan geometry including control panels and support
structure within the duct.
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